
1

An Intention-based Approach to the Updatability of Views
in Relational Databases

Yoshifumi Masunaga
Ochanomizu University

2-1-1 Otsuka, Bunkyo-ku
Tokyo 112-8610, Japan

+81-3-3943-3151
yoshi.masunaga@gmail.com

ABSTRACT
Views are essential for relational databases in that they could
provide a high degree of logical data independence. However,
although views are a useful tool for queries, they present
significant problems if insertions, deletions, or rewrites are
expressed using views. This is due to the fact that views are not
base relations stored in a relational database but virtual in the
sense of being merely definitions of queries issued to a relational
database. While the view update problem has attracted the
attention of many scientists and business people, a complete
resolution to this problem is still an open issue unfortunately. In
this paper, in contrast to the traditional approaches such as the
syntax-based approach and the semantics-based approach, an
intention-based approach is presented to resolve this problem. By
introducing the pro forma guessing of update intention approach,
Cartesian product views and join views become updatable while
they are not updatable in the traditional sense. This is due to the
fact that in certain cases the user's view update intention can be
guessed uniquely by checking the extension of each view update
transformation candidate, which is calculated using temporarily
materialized views. In addition to the above results, the
updatability of other basic views such as union views, difference
set views, intersection views, projection views, and selection
views is re-examined under the intention-based approach. Based
on the result, an algorithm is presented to determine whether a
given view, defined arbitrarily by using relational algebra
operations recursively, is updatable or not. Compared to the
traditional approach, it is shown that the intention-based approach
realizes richer solution to view updatability problem.

CCS Concepts
Information systems → Data management systems → Database
design and models → Relational database model.

Keywords
Relational databases; views; view update problem; updatability of
views; join views; Cartesian product views; materialized views;
relational algebra; intention-based approach.

1. INTRODUCTION
Relational database views were first introduced by Codd, the
inventor of the relational data model, himself in 1974 [1]. He used

the characteristics of relational algebra, so that views are defined
recursively using query results. As is well known, views could
provide shorthand notations for user convenience; relational
DBMSs could achieve a high degree of logical data independence
by supporting views at the external schema level; and views could
provide mechanisms to achieve database security within an
authorization framework.

However, since views are not base relations stored in a database,
but merely definitions of queries issued to a database, the
updatability of views poses a formidable problem, although there
is no problem as long as views are subject to query which is due
to query modification [2]. We call this problem the view update
problem. While the view update problem has attracted the
attention of many scientists and business people, and much
research and development has been reported since views were
first introduced, a complete resolution to this problem is
unfortunately, yet to be reached.

Let us summarize the history of the research into, and
development of, the view update problem. First, the problem was
investigated under the syntax-based approach. That is, a view was
defined as a mapping function from a database state to a view
state. Suppose that sτ represents a database state at time τ, V is a
view definition, V(sτ) represents the view state at that time, and u
represents the update operation issued to V(sτ); then u is
translatable if and only if there exists a translation T of u to an
update request to sτ, such that it has no side effects, and is unique
[3]. That is, u is translatable if and only if the commutative
diagram holds in Figure 1. In [3] Dayal and Bernstein mentioned
that the uniqueness criterion could be controversial; however,
since there is no other way to resolve translation ambiguity, they
adopted this criterion. Additionally, they imposed no extraneous
update condition, which means that the translation should be
minimal in the sense that it should not update base relations,
unless u otherwise requests. In our approach, which we will show
later, this condition is not considered, because it is automatically
satisfied by the construction of translation alternatives.

 Figure 1. Commutative diagram of representing
translatability of view update u at time τ.

To be appeared in the the Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication (ACM IMCOM '17),
January 05-07, 2017, Beppu, Japan

2

However, as research progressed, a semantics-based approach was
introduced in order to break through the limitations of the syntax-
based approach [6]. Instead of relaxing the uniqueness criterion of
the translation T in the syntax-based approach, it was intended to
resolve the semantic ambiguities of translation alternatives by
manipulating the meanings of views. That is, it was made clear
that the view update problem is highly semantical, in the sense
that interactions with view updaters are essentially necessary to
resolve the semantic ambiguities of view update translations. In
fact, the development of a view update tool named TAILOR was
reported, which involved user interaction to resolve semantic
ambiguity of translation [9]. This approach could be called
interaction-based.

In this paper, we introduce yet another approach to resolve the
translation ambiguity which is called the intention-based approach.
This does not require human interaction as the interaction-based
approach involved, but require materializing intermediate views to
resolve the translation ambiguity. The pro forma guessing of
update intention approach is proposed for this purpose. It will be
shown that Cartesian product views and join views become
updatable under the intention-based approach, while they are not
under the traditional approach, i.e. the syntax-based approach and
the semantics-based approach.

View definitions and their meanings will be examined in section 2.
View updatability under the traditional approach will be
summarized in section 3. Section 4 will outline the updatability of
relational database views based on pro forma guessing of update
intention. An algorithm to determine whether a generally defined
view is updatable or not under the pro forma guessing of update
intention approach will be given in section 5. Section 6 will
conclude this paper.

2. VIEWS

2.1 View Definitions
According to the first view paper [1], we adopt relational algebra
to define views. Seven relational algebra operators: union,
difference set, intersection, Cartesian product, projection,
selection, and join, are adopted to define views. Division operator
is excluded, since it is expressed as a generally defined view using
Cartesian product, projection and difference set operators. Strictly
speaking, difference set and join operators are also unnecessary,
since a set of five operators: union, intersection, Cartesian product,
projection, and selection, forms an independent set. But we will
include them because they are very commonly and widely used to
define views.

[Definition 1] (Views)

1. Base relation R is a view.

2. Suppose V1 and V2 are views which are union-compatible.
Then V1∪V2, V1－V2, and V1∩V2 are union, difference
set, and intersection views, respectively.

3. Suppose V1 and V2 are views. Then V1×V2 is a Cartesian
product view.

4. Suppose V is a view. Then V[X] is a projection view, where
X is a set of attributes of V.

5. Suppose V is a view. Then V[Ai θ Aj] is a selection view,
where Ai and Aj are θ-comparable.

6. Suppose V1 and V2 are views. Then V1[Ai θ Bj]V2 is a
join view, where Ai and Bj are θ-comparable.

7. Only those defined by 1 to 6 are views. ■

2.2 Meanings of Views
In the semantics-based approach, meanings of views play an
essential role in the identification of translation alternatives of a
view update [6]. First of all, the meaning of a base relation R is
defined by PR(t)={t | t∈R}, which is the logical formula of tuple
relational calculus. For example, the meaning of union view R∪S
is defined by PR∪S(t)={t | t∈R∨t∈R}. The meanings of the
seven basic views introduced above are summarized in Table 1.
We will show how view update translation rules are derived from
the meanings of views in the next section.

Table 1. Meanings of the basic views.

Types of
Basic Views

Notations of
Views

Meanings of Views

Union R∪S {t | t∈R ∨ t∈S}

Difference
set

R－S {t | t∈R ∧￢ (t∈S)}

Intersection R∩S { t | t∈R ∧ t∈S }

Cartesian
product

R×S {(r, s) | r∈R ∧ s∈S}

Projection R[X] {u |u∈dom(X)∧(∃t∈R)(t[X] = u)}

Selection R[Ai θ Aj] {t | t∈R ∧ t[Ai] θ t[Aj]}

Join R[Ai θ Bj]S {(t, u) | t∈R∧u∈S ∧t[Ai] θ u[Bj]}

3. VIEW UPDATE TRANSLATION
3.1 Translation Mechanism
As it was introduced by the syntax-based approach, the
updatability of views is defined as follows, where updatability is a
generic term for deletability, insertability, and rewritability:

[Definition 2] (View Updatability)

Let V be a view definition. Then V is updatable if and only if the
commutative diagram of Figure 1 holds for any update request
and for any database state at any time. ■

It is important to notice here that view updatability is an issue
examined on the database schema level, not on the instance level.
In other words, for example, if join views are deletable, then the
commutative diagram of Figure 1 should hold for any join view
definition, for any delete request against it, and for any database
state at any time. Conversely, if there exists a join view which is
not deletable under a certain circumstance, then join views are not
deletable.

In order to reveal the criteria to provide a correct translation T of
Figure 1 under the syntax-based approach, much research and
development has been reported taking into account the database
integrity conditions such as functional dependencies [3, 4, 5, 7, 8,
10, 11, 12, 18]. However, as we mentioned earlier, the semantics-
based approach [6] was introduced in order to break through the
limitations of the syntax-based approach. That is, by using the
meanings of views, it was revealed that the entire view update
translation mechanism was made clear. More precisely, given a
view update request u issued to view definition V, we can identify
a unique translation T or a set of translation alternatives
depending on the kind of update request u and view definition V.
For example, suppose that deletion request d=delete t1 from V,
where V=R∪S, is issued. Then ￢PV(t1) must hold because t1 lost
the meaning of V. Since PR∪S(t)={t | t∈R∨t∈R}, ￢(t1∈R)∧
￢(t1∈R) must hold. This implies that d must be translated into a

To be appeared in the the Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication (ACM IMCOM '17),
January 05-07, 2017, Beppu, Japan

3

set of two deletion requests which are d1=delete t1 from R and
d2=delete t1 from S. Notice that, in this case, the translation is
unique and no translation ambiguity happens.

3.2 Translation Ambiguity
However, translation ambiguity happens depending on update
requests and view definitions.

[Example 1] (Intersection views are not deletable)

Suppose that deletion request d=delete t1 from V, where V=R∩S,
is issued. Then translation alternatives occur. That is, since PR∩

S(t)={t | t∈R∧t∈R}, ￢(t1∈R)∨￢(t1∈R) must hold. This
means that d is realized by either d1=delete t1 from R or d2=delete
t1 from S or d3=execute both d1 and d2. Since we cannot find any
information to resolve this ambiguity from deletion request d, we
conclude that intersection views are not deletable. ■

Another interesting example is delete requests to join views.

[Example 2] (Natural join views are not deletable under the
traditional approach)

We first show how a delete request against a natural join view is
translated into update requests to its base relations under the
semantics-based approach: Suppose there are two base relations,
R(A, B) and S(B, C), and the natural join view R*S is defined.
The meaning of PR*S(w) is defined as follows, where w=(t, v) is a
tuple of R*S:

{(t, v) | t∈R ∧ v∈dom(C) ∧ (∃s∈S)(t[B] = s[B] ∧ v = s[C])}

This implies that tuple (a, b, c) is a member of R*S if and only if
(a, b) and (b, c) are members of R and S, respectively. According
to the semantics-based approach for view updatability, this means
that the delete request, d=delete (a, b, c) from R*S, is realized if
and only if either d is translated into delete request, d1=delete (a,
b) from R, or delete request, d2=delete (b, c) from S, or delete
request, d3=execute both d1 and d2. That is, we have three
translation alternatives, T1(d), T2(d), and T3(d), to realize d:

T1(d) = delete (a, b) from R

T2(d) = delete (b, c) from S

T3(d) = execute both T1(d) and T2(d)

However, this translation ambiguity causes a formidable
problem: Suppose that deletion request, d1 = delete (a, b’, c) from
R*S, whose instances at time τ are shown in Figure 2, is issued.
As it is easily checked, deletion of tuple (a, b’, c) from R*S, as
depicted in Figure 2, is realized without side effects by adopting
either T1(d1) = delete (a, b’) from R, or T2(d1) = delete (b’, c)
from S, or T3(d1) = execute both T1(d1) and T2(d1). However,
the essential point of the semantics-based approach is to notice
that the meanings of alternatives which bear weight in the real
world are completely different to each other. That is, alternative
T1(d1) should be adopted if and only if an event occurs in the real
world that requires deletion of (a, b’) from R. The same is true for
the other two alternatives. But, in general, it is impossible to
identify the reason why the delete request d1 was issued to R*S
without human interaction (This is the reason why TAILOR [9]
was developed.). Therefore, it was concluded that natural join
views are not deletable in the traditional approach. ■

The same happens to Cartesian product views. However, as it will
be shown in the next section, join views and Cartesian product
views become updatable in certain cases under the intention-based
approach.

4. VIEW UPDATABILITY BASED ON
INTENTION-BASED APPROACH
4.1 Pro Forma Guessing of Update Intention
As it was shown in section 3.2, natural join views are not
deletable in the traditional sense. This is due to the translation
ambiguity, which seemed unable to be resolved without human
interaction. In order to break down the wall of tradition, we
carefully re-examined what happened in these cases, and found
that, in certain cases, the user’s view update intention can be
guessed uniquely by checking the “extension” of each view
update transformation candidate, which is calculated using
temporarily materialized views. We call this novel method of
view updating “view updatability based on pro forma guessing of
update intention”. A typical example will be shown below.

[Example 3] (Natural join views are deletable under the pro
forma guessing of update intention approach)

Let us use the same example as in Example 2, i.e. let R(A, B) and
S(B, C) be base relations, and R*S be the natural join view
definition, whose instances at time τ are shown in Figure 2.
Suppose delete request, d4 = delete {(a, b, c), (a, b, c’)} from R*S,
is issued to the view. According to the traditional semantics-based
approach, the following three translation alternatives are implied:

T1(d4) = delete (a, b) from R

T2(d4) = delete {(b, c), (b, c’)} from S

T3(d4) = execute both T1(d4) and T2(d4)

Because of this translation ambiguity, delete requests to natural
join views are not accepted in the traditional approach (Example
2). However, if we execute T1(d4) temporarily, then we find that
the temporarily materialized view of R*S, which we call the
“extension” of translation candidate T1(d4), is R*S－{(a, b, c), (a,
b, c’)}, which is exactly the desired update result of deletion d4. If
we execute T2(d4) temporarily, then we find that the temporarily
materialized view is R*S－{(a, b, c), (a, b, c’), (a’, b, c), (a’, b,
c’)}, which has a side effect. Also, if we execute T3(d4)
temporarily, then the same result happens as was held for the
T2(d4) case. That is, although we had three translation
alternatives for the realization of delete request d4, we found that
the commutative diagram of Figure 1 held only for T1(d4); i.e. the
commutativity does not hold for both T2(d4) and T3(d4) in this
case. We interpret this phenomenon in the following way:
although there is no way to know the exact intention of the delete
request to the natural join view without asking the view updater
by human interaction, we guess to conclude that a certain event
would have happened in the real world at the time when the delete
request was issued which corresponds to T1(d4), because two
other translation alternatives, T2(d4) and T3(d4), cannot satisfy
the commutativity of Figure 1. In this case we say that the natural
join view V*S is deletable with respect to delete request d4 under

Figure 2. An instance of natural join view R*S.

To be appeared in the the Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication (ACM IMCOM '17),
January 05-07, 2017, Beppu, Japan

4

the pro forma guessing of update intention approach. Note that the
updatability of a given view definition under this approach
depends on both the database state and update request issued at
that time. ■

It is not always true that every natural join view is deletable under
the pro forma guessing of update intention approach. A typical
example has already been given in Example 2. However, since
certain cases exist where natural join views are deletable under the
pro forma guessing of update intention approach, we say, in
general, that natural join views are deletable under the pro forma
guessing of update intention approach, i.e. the intention-based
approach.

4.2 Updatability of Cartesian product Views
and Join Views Based on the Intention-based
Approach
As stated before, updatability is a generic term for deletability,
insertability, and rewritability. In Example 3, we showed that join
views are deletable under the intention-based approach. Similarly,
we can show that Cartesian product views are deletable under the
intention-based approach. So, let us examine the insertability and
rewritability of those views.

 [Example 4] (Cartesian product views are insertable under the
pro forma guessing of update intention approach)

Without loss of generality, suppose that an instance of Cartesian
product view R(A, B)×S(C, D) is given, as shown in Figure 3.
Suppose that tuple insert request i1 is issued:

i1 = insert (a, b, c, d) into R×S

Then, because of the meaning of the Cartesian product as shown
in Table 1, (a, b)∈R ∧(c, d) ∈S should hold to realize this
request. This implies a unique view update translation:

T(i1) = insert (a, b) into R and insert (c, d) into S

Obviously, this translation causes side effects, and therefore, in
the traditional sense, it is concluded that Cartesian product views
are not insertable.

Now, let us examine another case: suppose that tuple insert
request i2 is issued instead:

i2 = insert {(a3, b3, c1, d1), (a3, b3, c2, d2)} into R×S

Again, because of the meaning of the Cartesian product, i2 should
be translated into:

T(i2) =insert (a3, b3) into R and insert {(c1, d1), (c2, d2)} into S

If we temporarily update R and S according to T(i2), and
materialize the view, then we find that the temporarily
materialized view, i.e. the extension of T(i2), is exactly the
intended update result. We interpret this in the following way: we
guess that an event would happen in the real world, which
corresponds to the insertion of (a3, b3) into R. (Since insert {(c1,
d1), (c2, d2)} into S does not cause any change to S, we guess that
nothing occurs in the real world with respect to S.) The pro forma
guessing of update intention approach accepts this interpretation,
and therefore we can say that Cartesian product views are
insertable under the pro forma guessing of update intention
approach. Note that calculation of the temporarily materialized
view works not to eliminate translation ambiguity, as was shown
in Example 3, but to ensure the avoidance of side effects by the
view update translation. ■

A similar argument holds for join views, i.e. join views are
insertable under the pro forma guessing of update intention
approach.

[Example 5] (Cartesian product views are rewritable under the
pro forma guessing of update intention approach if the rewrite
request is compatible)

Let us take the same example of an instance of Cartesian product
view R(A, B)×S(C, D), as shown in Figure 3. Suppose that a tuple
rewrite request r1 is issued to R×S:

r1= rewrite {(a1, b1, c1, d1), (a1, b1, c2, d2)} of R×S to
{(a3, b3, c1, d1), (a3, b3, c2, d2)}

We consider that rewrite is a sequence of delete and insert
operations: First, the delete request, d1 = delete {(a1, b1, c1, d1),
(a1, b1, c2, d2)} from R×S, is realized by translating d1 to T1(d1)
= delete {(a1, b1)} from R, under the pro forma guessing of
update intention approach; as was true for the natural join view
shown in Example 3. Next, in order to fulfill request r1, tuple
insert request, i2= insert {(a3, b3, c1, d1), (a3, b3, c2, d2)} into
R×S, should be realized. As stated before, according to the
meaning of the Cartesian product, this request is translated into
base relation updates by translation T(i2), which was defined in
Example 4. Note that insertion of {(c1, d1), (c2, d2)} into S does
not affect S at all, because these two tuples exist in S. But, notice
that both the target of delete request d1 and the target of insert
request i2 are the same, i.e. R, in this case. In such a case, we say
that translations T1(d1) and T(i2) are compatible with respect to
rewrite request r1 or simply that rewrite request r1 is compatible.

If the compatibility does not hold, then the rewritability does not
hold. For example, suppose that tuple rewrite request r2 is issued
to R×S:

r2 = rewrite {(a1, b1, c1, d1), (a1, b1, c2, d2)} of R×S to
{(a1, b1, c3, d3), (a1, b1, c4, d4)}

Then, under the same delete request d1 and translation T1(d1),
R×S is deletable with respect to d1 under the pro forma guessing
of update intention approach. However, to realize r2, it is
necessary to execute a tuple insert request, i3 = insert {(a1, b1, c3,
d3), (a1, b1, c4, d4)} into R×S, after deletion d1 is executed. This
is translated by translation T(i3) = insert (a1, b1) into R and insert
{(c3, d3), (c4, d4)} into S. However, in this case, if we calculate a
temporarily materialized view of R×S, then we will see that a side
effect occurs, i.e. the extension of T(i3) is R×S∪{(a1, b1, c3, d3),
(a1, b1, c4, d4), (a2, b2, c3, d3), (a2, b2, c4, d4)}. This
phenomenon occurred because rewrite request r2 is not
compatible. Therefore, we can say that Cartesian product views
are rewritable under pro forma guessing of update intention
approach if rewrite requests are compatible. ■

Figure 3 . An instance of Cartesian product view R×S.

To be appeared in the the Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication (ACM IMCOM '17),
January 05-07, 2017, Beppu, Japan

5

Analogous investigation reveals that, join views are rewritable
under the pro forma guessing of update intention approach if
rewrite requests are compatible.

4.3 Updatability of Seven Basic Views
In this section, we will summarize the updatability of seven basic
views. As stated in the previous section, the updatability of
Cartesian product views and join views was improved under the
pro forma guessing of update intention approach, i.e. the
intention-based approach.

However, pro forma guessing of update intention does not work to
resolve the translation ambiguity for other cases, i.e. union,
difference set, intersection, projection, and selection views. This is
because view materialization does not cause any difference among
translation alternatives. Table 2 shows the updatability of seven
basic views under the intention-based approach and the traditional
approach. In the next section, we will investigate the updatability
of generally defined views using this table.

Table 2. List of the updatability of seven basic views under the
intention-based approach and the traditional approach.

Types of
Basic
Views

View Update
Operations

Updatability

Intention-based
Approach

Traditional
Approach

Union

Delete ○ ○

Insert × ×

Rewrite × ×

Difference
set

Delete × ×

Insert ○ ○

Rewrite × ×

Intersection

Delete × ×

Insert ○ ○

Rewrite × ×

Cartesian
product

Delete ○ ×

Insert ○ ×

Rewrite ○ *1 ×

Projection

Delete ○ ○

Insert ○ *2 ○ *2

Rewrite × ×

Selection

Delete × ×

Insert ○ ○

Rewrite × ×

Join

Delete ○ ×

Insert ○ ×

Rewrite ○ *1 ×

○: Updatable. : ×: Not updatable,

*1: Request is compatible, *2: Primary key included.

5. UPDATABILITY OF GENERALLY
DEFINED VIEWS
5.1 View Definition Trees and Their Data
Structure
As per Definition 1, in general, a view is defined recursively using
base relations and predefined views. Note first that parentheses
are used when a view is defined. For example, a union view of R
and S is denoted by (R∪S) instead of R∪S, except for the case
where a base relation itself is defined as a view. Obviously, by
virtue of parentheses, we can parse a view definition uniquely, so
that we can easily obtain a view definition tree or a view parsing
tree. Since the seven basic view-defining operators are either
unary or binary operators (projection and selection operators are
unary and the others are binary), a view definition tree forms a
binary tree whose root is a generally defined view; its
intermediate nodes represent intermediate views, and its leaves
represent base relations which are used to define view. Because of
the existence of difference set, Cartesian product, and join
operators, view definition trees are ordered trees. Therefore, a
breadth-first search is possible for view definition trees.

Now, in order for a decision algorithm of view updatability to be
programmable, let us define a data structure of a view definition
tree. Data structure for a node is shown in Figure 4. A node is
denoted by NODE. It consists of four fields: VNAME, VDEF,
LLINK, and RLINK. The node name field VNAME specifies
identifiers such as the targeted view name, intermediate view
name, or base relation name. The view-defining operation field
VDEF concretely specifies view definition operations used to
define the node in terms of its children, i.e. intermediate views or
bases relations specified by the left link field LLINK and the right
link field RLINK of that node, where the RLINK value is set to
NULL if the view definition operation is unary. Note that nodes of
a view definition tree are indexed according to the breadth-first
search order, where the root is indexed “0” (zero).

Now, let us examine a sample view named SE@Tokyo, which is
defined as follows:

[Example 6] (View SE@Tokyo and its view definition tree)

Suppose there are two base relations, EMP(ENO, ENAME, DNO,
JOB) and DEPT(DNO, DNAME, LOC) ; then a view named
SE@Tokyo is defined as follows:

SE@Tokyo = (((EMP[JOB = ‘SE’]) [EMP.DNO =
DEPT.DNO] (DEPT[LOC = ‘Tokyo’])) [ENO, ENAME,
EMP.DNO])

Obviously, this view lists the employee number (ENO), employee
name (ENAME), and department number (DNO) of all employees
whose job is SE and whose department location is Tokyo.
Although set operators such as union, difference set, and
intersection operators are not used, SE@Tokyo seems quite a
common view because it uses selection, equi-join, and projection

Figure 4 . Data structure of a node of view definition
tree.

To be appeared in the the Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication (ACM IMCOM '17),
January 05-07, 2017, Beppu, Japan

6

operators. Because we required to use parentheses in defining
views, SE@Tokyo is unambiguously parsed so that its view
definition tree is obtained straightforwardly as shown in Figure 5.
Here, shorthand notations appearing in the VNAME fields
represent intermediate views:
IntView1=((EMP[JOB=‘SE’])[EMP.DNO=DEPT.DNO]
DEPT[LOC=‘Tokyo’])), IntView2=(EMP[JOB=‘SE’]), and
IntView3 = (DEPT[LOC=‘Tokyo’]). ■

5.2 Decision Algorithm of View Updatability
Based on Pro Forma Guessing of Update
Intention
Let us show an algorithm to decide whether a generally defined
view is updatable or not with respect to an update request issued
to it under the pro forma guessing of update intention approach.

[Algorithm D] (Decision Algorithm of View Updatability Based
on Pro Forma Guessing of Update Intention)

Given a view definition V and an update request u against V, this
algorithm decides whether V is updatable or not with respect to u
under the pro forma guessing of update intention approach. The
third column of Table 2 is looked up to know the view
updatability for the seven basic views. The pointer variable P is
used to refer to a node of the view definition tree. The root of the
tree is indexed “0”, and the other nodes are indexed according
to the breadth-first search order. The nodes of the tree are
assumed to contain at least the following fields in addition to
VNAME(P) = view name stored in NODE(P); VDEF(P) = view
definition used to define NODE(P) in terms of its children, i.e. the
roots of the subtrees pointed to by LLINK(P) and RLINK(P);
LLINK(P) = pointer to left subtree of NODE(P); and RLINK(P) =
pointer to right subtree of NODE(P):

UREQ (P) = update request to NODE(P);

UREL(P) = update relevance of NODE(P);

ICON(P) = integrity constraint of NODE(P).

D1. [Initialize] Construct a view definition tree of V. Set P ← 0
(zero), set UREQ(0) = u, and set UREL(P) = 1 (1 means

“relevant” and 0 means “irrelevant”) for every P from 0 to
Nmax. (The pointer variable P will move down the tree
according to the breadth-first search order. Nodes of the tree
will be indexed 0, 1, 2, …, Nmax (Nmax≧0), according to this
order.) Set ICON(P) = NULL for every P, and VDEF(P) =
‘Base’ for every P indexed to leaves of the tree.

D2. [Detection of termination] If P = Nmax, go to D7. Otherwise, if
UREL(P) = 1, go to D3. If UREL(P) = 0, P ← P+1 and goes
back to D2.

D3. [Table lookup] Look up the third column of Table 2, and
check the updatability of the VDEF(P) – UREQ(P) pair. If the
entry is “○”, set ICON(P) and modify the update request
UREQ(P) using ICON(P), and go to D4 or D5, respectively.
Go to D6 otherwise.

D4. [Translate view update in the traditional sense] In this case,
UREQ(P) will be translated into update requests against one
or both of its children, i.e. the roots of the subtrees pointed to
by LLINK(P) and RLINK(P). If the translation result of
UREQ(P) is one sided, for example on the left side, set
UREQ(LLINK(P)) accordingly, and set UREL(P) = 0 for
every P indexed to any node of the subtree pointed to by
RLINK(P). Set analogously for the right case. If two-sided, set
UREQ(LLINK(P)) and UREQ(RLINK(P)) accordingly. Note
that if VDEF(P) is a unary operation, translation is always on
the left side. Set P ← P+1 and go back to D2.

D5. [Translate view update based on pro forma guessing of update
intention] In this case, updatability of UREQ(P) depends on
the database state at the time of update issued. Temporal
updates are necessary. If it is updatable, take steps similar to
D4. Go to D6 otherwise.

D6. [Not updatable] V is not updatable with respect to u.

D7. [Updatable] V is updatable with respect to u. The updates to
base relations are calculated accordingly, by composing
relevant update translations. ■

5.3 Explanation of the Movement of the
Decision Algorithm of View Updatability
Let us explain how Algorithm D, the decision algorithm of view
updatability based on pro forma guessing of update intention,
works, by taking an example. To do this, we will use the view
introduced in Example 6, SE@Tokyo. We assume that a delete
request, d = delete {(003, J. Smith, K41)} from SE@Tokyo, is
issued, where instances of relations EMP and DEPT are as
depicted in Figure 6. (Values SE and NE represent system
engineer and network engineer, respectively.)

Now, let us explain how Algorithm D works step by step:

[Example 7] (A typical movement of Algorithm D)

1. (Step D1) Given a view definition of SE@Tokyo, construct its
view definition tree as depicted in Figure 5. According to the
breadth-first search order numbering, nodes are indexed. Set
UREL(P) = 1 and ICON(P) = NULL for every P. Set P = 0
and UREQ(0) = d; go to step D2.

2. (Step D2) Since P = 0 ≠ Nmax (= 5) and UREL(0) = 1, go to
step D3.

3. (Step D3) By VDEF(0), NODE(0) = SE@Tokyo is a
projection view of IntView1 on [ENO, NAME, EMP.DNO].
Set ICON(0) = (∀ s ∈ SE@Tokyo)(∃ t ∈ IntView1)(s =
t[ENO, ENAME, EMP.DNO]). Since the VDEF(0) –

Figure 5 . Data structure of a binary tree representing
view SE@Tokyo.

To be appeared in the the Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication (ACM IMCOM '17),
January 05-07, 2017, Beppu, Japan

7

UREQ(0) pair actually comprises a projection view and a
delete request, by table lookup, go to step D4.

4. (Step D4) UREQ(0) is translated into delete request
UREQ(LLINK(0)) = UREQ(1) = d1 = delete {(003, J. Smith,
K41, *, *, *, *)} from IntView1; where asterisk (*) represents
any value or NULL. Set P ← P+1 (therefore P = 1), and go
back to step D2.

5. (Step D2) Since P = 1 ≠ Nmax and UREL(1) = 1, go to step D3.

6. (Step D3) By VDEF(1), NODE(1) = IntView1 is a join view
of IntView2 (= NODE(2)) and IntView3 (= NODE(3)) on
[EMP.DNO = DEPT.DNO]. Set ICON(1) = (∀ s ∈

IntView1)(∃t2∈IntView2)(∃t3∈IntView3) (s = (t1, t2)∧
t1[DNO] = t2[DNO]). Using ICON(1), compensate UREQ(1)
so that it is modified to: UREQ(1) = d1’ = delete {(003, J.
Smith, K41, *, K41, *, *)} from IntView1. Since the VDEF(1)
– UREQ(1) pair actually composes an equi-join view and a
delete request, by table lookup, we realize that the
updatability of this pair will be decided based on pro forma
guessing of update intention. Go to step D5.

7. (Step D5) In order to check the translatability of UREQ(1)
under the pro forma guessing of update intention approach,
IntView2 and IntView3 are temporarily materialized, and
three translation alternatives T1, T2, and T3 of UREQ(1) =
d1’, are temporarily executed:

T1(d1’) = delete {(003, J. Smith, K41, *)} from IntView2;

T2(d1’) = delete {(K41, *, *)} from IntView3;

T3(d1’) = execute both T1(d1’) and T2(d1’).

Figure 7 shows the temporarily materialized intermediate
views IntView2 and IntView3.

In order to check whether one of the three translation
alternatives, T1(d1’), T2(d1’), and T3(d1’), is accepted or not
as a unique translation of UREQ(1) under the pro forma
guessing of update intention approach, we also need to
temporarily materialize IntView1, to which the delete request
UREQ(1) is issued. Figure 8 shows the temporarily
materialized intermediate view IntView1.

By temporal execution of UREQ(1) against IntView1, we
know that tuple (003, J. Smith, K41, SE, K41, AI, Tokyo) will
be deleted. Now, we will examine what happens when
alternatives T1(d1’), T2(d1’), and T3(d1’) are temporarily
executed. If T1(d1’) is temporarily executed, we see that the
extension of T1(d1’) is exactly equal to the result of the
temporal execution of UREQ(1) against IntView1. In contrast,
if T2(d1’) is executed, then we see that, in addition to tuple
(003, J. Smith, K41, SE, K41, AI, Tokyo), tuple (006, R.
Jones, K41, SE, K41, AI, Tokyo) is also deleted, which is a
side effect. The same argument holds for T3(d1’). Since we
have succeeded in identifying a unique translation T1(d1’)
which satisfies the commutativity of Fig. 1, we conclude that
the VDEF(1) is deletable with respect to UREQ(1) under
the pro forma guessing of update intention approach. Set
UREQ(2) = T1(d1’) = delete {(003, J. Smith, K41, *)} from
IntView2; Since the update translation is one sided, set
UREL(P) = 0 for every P indexed to any node of the subtree
pointed by RLINK(1). (Therefore, UREL(3) = UREL(5) = 0.)
Set P ← P+1 (therefore, P = 2), and go back to step D2.

8. (Step D2) Since P = 2 ≠ Nmax and UREL(2) = 1, go to step D3.

9. (Step D3) By VDEF(2), NODE(2) = IntView2 is a selection
view of EMP, where JOB = ‘SE’. Set ICON(2) = (∀s∈

IntView2)(∃t∈EMP)(s = t ∧ t[Job] = ‘SE’). Using ICON(2),
compensate UREQ(2) so that it is modified to UREQ(2) =
delete (003, J. Smith, K41, SE) from IntView2. Since the
VDEF(2) – UREQ(2) pair actually composes a selection view
and a delete request, by table lookup, go to step D4.

10. (Step D4) UREQ(2) is translated into delete request
UREQ(LLINK(2)) = UREQ(4) = delete (003, J. Smith, K41,
SE) from EMP. Set P ← P+1 (therefore P = 3), and go back to
step D2.

11. (Step D2) Since P = 3 ≠ Nmax, but UREL(3) = 0, set P ← P+1
(therefore P = 4), and go back to step D2.

12. (Step D2) Since P = 4 ≠ Nmax and UREL(4) = 1, go to step D3.

13. (Step D3) Look up the third column of Table 2, and check the
updatability of the VDEF(4) – UREQ(4) pair, which is
actually a base relation and a delete request. Since base
relations are updatable, UREQ(4) constitutes a member of the
translation of UREQ(0) against base relations. Set P ← P+1
(therefore P = 5), and go back to step D2.

14. (Step D2) Since P = 5 = Nmax, go to D7.

15. (Step D7) SE@Tokyo is updatable with respect to u.
UREQ(4) is the update to base relations which realizes the
intended update request.

Actually, by executing UREQ(4), tuple (003, J. Smith, K41) is
successfully deleted from SE@Tokyo.

Figure 6 . Instances of base relations EMP and DEPT.

Figure 7 . Instances of temporarily materialized
intermediate views IntView2 and IntView3.

To be appeared in the the Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication (ACM IMCOM '17),
January 05-07, 2017, Beppu, Japan

8

6. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the view update problem, an old and
new problem in the relational database theory. In order to break
through the updatability of views, an intention-based approach
called the pro forma guessing of update intention approach was
introduced. This approach differs from the traditional approach
such as the syntax-based approach and the semantics-based
approach in the sense that, in certain cases, the user’s view update
intention can be guessed uniquely by checking the extension of
each view update transformation candidate, which is calculated
using temporarily materialized views. Under the intention-based
approach, join views and Cartesian product views became
updatable in certain cases although they are not updatable in the
traditional approach. Since those views are the most commonly
used views, the results presented in this paper seem significant.

In order to determine whether a given view is updatable or not
under the intention-based approach, we re-examined the
updatability of the seven basic views; union views, difference set
views, intersection views, Cartesian product views, projection
views, selection views, and join views. Based on the result, an
algorithm is presented to determine whether a given view, defined
arbitrarily by using the seven basic view-defining operators
recursively, is updatable or not. An example is also given to
deepen a concrete understanding of the algorithm. Consequently,
a unified solution is applied to the view update problem which,
until now, had not been thoroughly resolved.

Future work includes the application of the intention-based
approach to the field of SQL. In order to do that, we will need to
investigate at least two issues: first, since SQL is not set-based,
but bag-based or multiset-based, the pro forma guessing of update
intention approach should be modified, so that it can cover the
bag-based logic. Second, we should elaborate on how to
implement the pro forma guessing of update intention approach
on a relational DBMS. The key idea is to use the INSTEAD OF
trigger, which was standardized in SQL:2008 [16]. Although it is
expected that the updatability of SQL views will be massively
increased by using the INSTEAD OF trigger, the best way of
using it is not clear. This is because there is not international
standard of how best to use it, as well as a lack of theory
regarding this matter. We believe that the pro forma guessing of
update intention approach presented in this paper will contribute
to the development of a mechanism for the realization of an
extremely high level of SQL view updatability.

7. ACKNOWLEDGMENTS
The author thanks Ishii, T. and Nagata, Y. (SRA OSS, Inc., Japan)
for their discussion. This work is partly supported by the Grant-in-
Aid for Scientific Research (KAKENHI) (C) (16K00152）of the
Ministry of Education, Culture, Sports, Science and Technology
(MEXT) of Japan．

8. REFERENCES
[1] Codd, E. F. 1974. Recent investigations in a relational

database system, Information Processing 74 (1974), North-
Holland, 1017-1021.

[2] Stonebraker, M. 1975. Implementation of integrity
constraints and views by query modification, In Proceedings
of the 1975 ACM SIGMOD international conference on
Management of data (1975), ACM, New York, NY, 65-78.

[3] Dayal, D. and Bernstein, P. 1978. On the updatability of
relational views, In Proc. 4th VLDB (1978), 368-377.

[4] Bancilhon, F. and N. Spyratos, N. 1981. Update semantics of
relational views, ACM TODS 6, 4 (1981), 557-575.

[5] Cosmadakis, S. and C. Papadimitriou, C. 1983. Updates of
relational views, In Proc. ACM PODS (1983), 317-331.

[6] Masunaga, Y. 1984. A relational database view update
translation mechanism, In Proc. 10th VLDB (1984), 309-320.

[7] Keller, A. 1985. Algorithms for translating view updates to
database updates for views involving selections, projections,
and joins, In ACM PODS (1985), 154-163.

[8] Keller, A. 1986. Choosing a View Update Translator by
Dialog at View Definition Time, In Proc. 12th VLDB
(1986), 467-474.

[9] Sheth,A., Larson, J. and Watkins, E. 1988. TAILOR, A Tool
for Updating Views, LNCS, Vol. 303, Springer, 190-213.

[10] Gottlob, G., Paolini, P., and Zicari, R. 1988. Properties and
update semantics of consistent views, ACM TODS 13, 4
(1988), 486-524.

[11] Langerak, R. 1990. View updates in relational databases with
an independent scheme, ACM TODS 15, 1 (1990), 40-66.

[12] Chen, I.-M., Hull, H. and McLeod, D. 1995. An execution
model for limited ambiguity rules and its application to
derived data update, ACM TODS 20, 4, 365-413.

[13] ANSI/ISO/IEC International Standard (IS), Database
Language SQL—Part 2: Foundation (SQL/Foundation),
«Part 2», September 1999.

[14] Melton, J. and Simon, A. 2002. SQL:1999 Understanding
Relational Language Components, Morgan Kaufmann.

[15] Nathan Foster, J., Greenwald, M. B., Moore, J. T., Pierce, B.
C., and Schmitt, A. 2005. Combinators for bi-directional tree
transformations: A linguistic approach to the view update
problem, In Proc. ACM POPL’05 (January, 2005).

[16] ISO/IEC 9075-2:2008 Information technology -- Database
languages -- SQL -- Part 2: Foundation (SQL/Foundation),
http://www.iso.org/iso/catalogue_detail.htm?csnumber=3864
0.

[17] PostgreSQL 9.3.9 Documentation, Chapter 34. The
Information Schema, 34.63. Views,
http://www.postgresql.org/docs/9.3/static/infoschema-
views.html.

[18] Date, C. J. 2013. View Updating and Relational Theory:
Solving the View Update Problem, O’Reilly.

.

Figure 8 . Instance of temporarily materialized
intermediate view IntView1.

To be appeared in the the Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication (ACM IMCOM '17),
January 05-07, 2017, Beppu, Japan

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

